Indian Journal of Dental ResearchIndian Journal of Dental ResearchIndian Journal of Dental Research
Indian Journal of Dental Research   Login   |  Users online: 1009

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size         


ORIGINAL RESEARCH Table of Contents   
Year : 2019  |  Volume : 30  |  Issue : 4  |  Page : 553-557
A comparison of antibacterial inhibitory effect on Streptococcus mutans and tensile strength between chitosan-based bonding adhesives and commercial products

Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia

Correspondence Address:
Dr. Ida Bagus Narmada
Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Jl Jl, Mayjen. Prof. Dr. Moestopo No. 47 Surabaya
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijdr.IJDR_236_18

Rights and Permissions

Background: Adhesive bonding is the material used to attach a bracket to the enamel surface of the tooth. Streptococcus mutans contributes to enamel demineralization during orthodontic treatment. Objectives: To analyze the antimicrobial inhibitory effect of Streptococcus mutans bacteria and tensile strength of chitosan and CaCO3-based adhesive bonding material. Materials and Methods: The investigation constituted laboratory experimental research featuring analytical observation and a random sampling method. The antibacterial inhibitory effect of chitosan and CaCO3-based adhesive bonding against Streptococcus mutans involved six groups: two control groups using commercial light cure and self-cure adhesive bonding products and four groups using adhesive bonding consisting of 75% CaCO3 + 17.6% Bis-GMA + 22.4% MMA with various percentages of chitosan composition (A1: 25%, A2: 50%, A3: 75%, and A4: 100%) each group consisting of two samples (n = 12). A diametric test was conducted consisting of three samples (n = 15) to measure the tensile strength of each group. Data were analyzed by a combination of one-way analysis of variance and least significant difference tests. Result: The antibacterial inhibitory effect showed significant differences between groups (A1: 2.9467 ± 0.4163, A2: 3.6500 ± 0.6245, A3: 5.1267 ± 0.2517, A4: 4.7267 ± 0.9238; P = 0.0000; P < 0.05). A diametric tensile strength test confirmed significant differences between groups (A1: 7.2733 ± 5.0046, A2: 6.7667 ± 4.4346, A3: 6.4533 ± 2.9994, A4: 1.0058 ± 1.0058, K1: 15.6167 ± 3.1250; P = 0.009; P < 0.05). Conclusion: Chitosan-based adhesive bonding with good tensile strength has an antibacterial inhibitory effect against Streptococcus mutans.

Print this article     Email this article

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
  Citation Manager
 Access Statistics
  Reader Comments
  Email Alert *
  Add to My List *

 Article Access Statistics
    PDF Downloaded48    
    Comments [Add]    

Recommend this journal