|
ORIGINAL RESEARCH |
|
|
|
Year : 2013 |
Volume
: 24 | Issue : 2 | Page
: 237-241 |
|
Effect of fiber diameter on flexural properties of fiber-reinforced composites
Mohammad Bagher Rezvani1, Mohammad Atai2, Faeze Hamze3
1 Department of Aesthetic and Restorative, Shahed Dental School, Tehran, Iran 2 Polymer and Petrochemical Institute, Tehran, Iran 3 Operative Department, Kerman Dental School, Kerman, Iran
Correspondence Address:
Faeze Hamze Operative Department, Kerman Dental School, Kerman Iran
 Source of Support: The grants, materials, and equipments of this research are supported by Dental Research Center of Shahed Dental School, Tehran, Iran, Conflict of Interest: None  | Check |
DOI: 10.4103/0970-9290.116696
|
|
Background: Flexural strength (FS) is one of the most important properties of restorative dental materials which could be improved in fiber-reinforced composites (FRCs) by several methods including the incorporation of stronger reinforcing fibers.
Aim: This study evaluates the influence of the glass fiber diameter on the FS and elastic modulus of FRCs at the same weight percentage.
Materials and Methods: A mixture of 2,2-bis-[4-(methacryloxypropoxy)-phenyl]-propaneand triethyleneglycol dimethacrylate (60/40 by weight) was prepared as the matrix phase in which 0.5 wt. % camphorquinone and 0.5 wt. % N-N'-dimethylaminoethyl methacrylate were dissolved as photoinitiator system. Glass fibers with three different diameters (14, 19, and 26 μm) were impregnated with the matrix resin using a soft brush. The FRCs were inserted into a 2 × 2 × 25 mm 3 mold and cured using a light curing unit with an intensity of ca. 600 mW/cm 2 . The FS of the FRCs was measured in a three-point bending method. The elastic modulus was determined from the slope of the initial linear part of stress-strain curve. The fracture surface of the composites was observed using scanning electron microscopy to study the fiber-matrix interface.
Statistical Analysis: The results were analyzed and compared using one-way ANOVA and Tukey's post-hoc test.
Results: Although the FS increased as the diameter of fibers increased up to 19 μm (P < 0.05), no significant difference was observed between the composites containing fibers with diameters of 19 and 26 μm.
Conclusion: The diameter of the fibers influences the mechanical properties of the FRCs. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|