Indian Journal of Dental Research

ORIGINAL RESEARCH
Year
: 2009  |  Volume : 20  |  Issue : 3  |  Page : 277--281

Flexural modulus, flexural strength, and stiffness of fiber-reinforced posts


Veridiana R Novais1, Paulo S Quagliatto1, Alvaro Della Bona2, Lourenco Correr-Sobrinho3, Carlos J Soares1 
1 Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
2 Department of Restorative Dentistry, Dental School, University of Passo Fundo, Rio Grande do Sul, Brazil
3 Department of Dental Materials, School of Dentistry, University of Campinas, Piracicaba, SP, Brazil

Correspondence Address:
Carlos J Soares
Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG
Brazil

Background: The radiopacity degree of posts is not enough for adequate visualization during radiographic analyses. Glass fiber post with stainless steel reinforcement has been fabricated in an attempt to overcome this limitation. Aim: This study was designed to determine the influence of this metal reinforcement on the post mechanical properties. Materials and Methods: This study evaluated flexural modulus (E), flexural strength (σ), and stiffness (S) of five different fiber post systems (n = 5): RfX (Reforpost Glass Fiber RX; Ângelus, Londrina, PR, Brazil); RG (Reforpost Glass Fiber, Ângelus); RC (Reforpost Carbon Fiber, Ângelus); FP (Fibrekor Post; Jeneric Pentron Inc., Wallingford, CT, USA); and CP (C-Post; Bisco Dental Products, Schaumburg, IL, USA), testing the hypothesis that the insertion of a metal reinforcement (RfX) jeopardizes the mechanical properties of a glass fiber post. Posts were loaded in three-point bending using a testing machine with a crosshead speed of 0.5 mm/min. Results : The results were statistically analyzed using one-way ANOVA and Tukey«SQ»s multiple range tests (a = 0.05). Mean and standard deviation values of E (GPa), s (MPa), and S (N/mm) were as follows: RfX: 10.8 ± 1.6, 598.0 ± 52.0, 132.0 ± 21.9; RG: 10.6 ± 1.0, 562.0 ± 24.9, 137.8 ± 5.5; RC: 15.9 ± 2.4, 680.5 ± 34.8, 190.9 ± 12.9; FP: 10.9 ± 1.4, 586.8 ± 21.9, 122.4 ± 17.3; CP: 6.3 ± 1.7, 678.1 ± 54.2, 246.0 ± 41.7. Carbon fiber posts showed the highest mean s values (P < 0.05). In addition, RC showed the highest mean E value and CP showed the highest mean S value (P < 0.05). Conclusion : The hypothesis was rejected since the metal reinforcement in the glass fiber post (RfX) does not decrease the mechanical property values. Posts reinforced with carbon fibers have a higher flexural strength than glass fiber posts, although all posts showed similar mechanical property values with dentin.


How to cite this article:
Novais VR, Quagliatto PS, Bona AD, Correr-Sobrinho L, Soares CJ. Flexural modulus, flexural strength, and stiffness of fiber-reinforced posts.Indian J Dent Res 2009;20:277-281


How to cite this URL:
Novais VR, Quagliatto PS, Bona AD, Correr-Sobrinho L, Soares CJ. Flexural modulus, flexural strength, and stiffness of fiber-reinforced posts. Indian J Dent Res [serial online] 2009 [cited 2020 Sep 21 ];20:277-281
Available from: http://www.ijdr.in/article.asp?issn=0970-9290;year=2009;volume=20;issue=3;spage=277;epage=281;aulast=Novais;type=0