Indian Journal of Dental ResearchIndian Journal of Dental ResearchIndian Journal of Dental Research
HOME | ABOUT US | EDITORIAL BOARD | AHEAD OF PRINT | CURRENT ISSUE | ARCHIVES | INSTRUCTIONS | SUBSCRIBE | ADVERTISE | CONTACT
Indian Journal of Dental Research   Login   |  Users online: 1769

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size         

 


 
ORIGINAL RESEARCH Table of Contents   
Year : 2018  |  Volume : 29  |  Issue : 5  |  Page : 634-640
A three-dimensional finite element analysis to evaluate stress distribution tooth in tooth implant-supported prosthesis with variations in non-rigid connector design and location


1 Department of Prosthodontics and Crown and Bridge, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh, India
2 Former Professor and HOD, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
3 Department of Prosthodontics and Crown and Bridge, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India

Correspondence Address:
Dr. K Sumathi Nitin
Department of Prosthodontics and Crown and Bridge, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijdr.IJDR_538_16

Rights and Permissions

Background: The physiologically mobile natural tooth and rigidly fixed dental implant causes different distribution of stress when connected in prosthesis and nonrigid connector compensates this. Understanding of biomechanical behavior is necessary for an adequate choice and construction of this type of rehabilitation. However, there has been insufficient research focusing on different location and type of the nonrigid connector related with the prognosis of both implant and the tooth. Aim of the Study: The purpose of this finite element (FE) analysis was to evaluate the stress distribution around bone, implant, and tooth in tooth implant fixed prosthesis under static load with variations in design and location of nonrigid connectors under simulated functional loads. Materials and Method: Three, 3-dimensional FE models connecting tooth and implant were constructed with different location and type of nonrigid connector. Simulated occlusal load was applied on the restorations and stresses developed in the supporting structures were monitored. Results: The highest stresses were found around the implant in model with nonrigid connector placed between the tooth and implant and model with modified nonrigid connector. On the other hand, less stress was noted around the implant where nonrigid connector was placed between the implant and pontic. Conclusion: It is advisable to place the nonrigid connector between the implant and the pontic to protect the implant from torque effects in a tooth implant fixed prosthesis.


[FULL TEXT] [PDF]*
Print this article     Email this article

 
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
  Citation Manager
 Access Statistics
  Reader Comments
  Email Alert *
  Add to My List *
 
 

 Article Access Statistics
    Viewed191    
    Printed4    
    Emailed0    
    PDF Downloaded23    
    Comments [Add]    

Recommend this journal