Indian Journal of Dental ResearchIndian Journal of Dental ResearchIndian Journal of Dental Research
HOME | ABOUT US | EDITORIAL BOARD | AHEAD OF PRINT | CURRENT ISSUE | ARCHIVES | INSTRUCTIONS | SUBSCRIBE | ADVERTISE | CONTACT
Indian Journal of Dental Research   Login   |  Users online: 3237

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size         

 


 
ORIGINAL RESEARCH Table of Contents   
Year : 2016  |  Volume : 27  |  Issue : 2  |  Page : 145-150
Effect of electron-beam irradiation on antimicrobial, antibiofilm activity, and cytotoxicity of mouth rinses


1 Nitte University Centre for Science Education and Research, Nitte University, Mangalore, Karnataka, India
2 NUCSReM, Nitte University, Mangalore, Karnataka, India
3 Department of Biosciences, Mangalore University, Mangalore, Karnataka, India
4 Department of Physics, Mangalore University, Mangalore, Karnataka, India
5 Department of Microbiology, K. S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India

Correspondence Address:
A Veena Shetty
Department of Microbiology, K. S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-9290.183116

Rights and Permissions

Background: Oral health diseases are common in all regions of the world. Mouth rinses are widely used generally by population as a port of daily oral care regimen. In addition to antimicrobial activity, mouth rinses possess certain cytotoxic effects. Electron-beam (E-beam) radiation is a form of ionizing energy known to induce structural, physical, and chemical changes in irradiated products. In this study, the modulatory effects of E-beam in irradiated mouth rinses were evaluated for its biological activities. Materials and Methods: The antimicrobial activities of nonirradiated and irradiated mouth rinses were evaluated for its antimicrobial and antibiofilm activities against oral pathogens, Enterococcus faecalis, Streptococcus mutans, Staphylococcus aureus, and Candida albicans. The antimicrobial activity was evaluated by disc diffusion method and antibiofilm activity was evaluated by O'Toole method. The cytotoxicity was evaluated against human gingival fibroblast (HGF) cells by 3-(4, 5 Dimethythiazol-yl)-2,5-Diphenyl-tetrazolium bromide assay. Results: Colgate Plax (CP) exhibited the antimicrobial activity against the tested pathogens, and a significant (P< 0.05) increase was observed against S. aureus at 750 Gy irradiation. Further, CP significantly (P< 0.05) suppressed S. mutans, S. aureus, and C. albicans biofilm. Listerine (LS) inhibited S. mutans and C. albicans biofilm. Whereas irradiated CP and LS significantly (P< 0.05) suppressed the biofilm formed by oral pathogens. The suppression of biofilm by irradiated mouth rinses was dose- and species-dependent. There was no significant (P > 0.05) difference in the cytotoxicity of irradiated and nonirradiated mouth rinses on HGF cells. However, an increased percentage viability of HGF cells was observed by mouth rinses irradiated at 750 Gy.xs Conclusion: The E-beam irradiation enhanced the antibiofilm activity of mouth rinses without modifying the cytotoxicity.


[FULL TEXT] [PDF]*
Print this article     Email this article

 
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
  Citation Manager
 Access Statistics
  Reader Comments
  Email Alert *
  Add to My List *
 
 

 Article Access Statistics
    Viewed1284    
    Printed25    
    Emailed0    
    PDF Downloaded104    
    Comments [Add]    

Recommend this journal