Indian Journal of Dental ResearchIndian Journal of Dental ResearchIndian Journal of Dental Research
Indian Journal of Dental Research   Login   |  Users online: 497

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size         


ORIGINAL RESEARCH Table of Contents   
Year : 2013  |  Volume : 24  |  Issue : 3  |  Page : 356-362
An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers

1 Department of Prosthodontics, Kalinga Institute of Dental Sciences, Bhubaneswar, Odisha, India
2 Department of Prosthodontics, Army College of Dental Sciences, Hyderabad, India
3 Ex-Principal, Army College of Dental Sciences, Hyderabad, India
4 Scientist, Department of Mettalurgy, DMRL, Hyderabad, India

Correspondence Address:
Anjana Raut
Department of Prosthodontics, Kalinga Institute of Dental Sciences, Bhubaneswar, Odisha
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0970-9290.118006

Rights and Permissions

Statement of Problem: Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. Purpose: This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. Materials and Methods: The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate) and Pyrax (compression molded, control group). Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Results: Flexural strength of Brecrystal (82.08 ± 1.27 MPa) was significantly higher than Pyrax (72.76 ± 0.97 MPa). The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa). The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Conclusion: Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

Print this article     Email this article

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
  Citation Manager
 Access Statistics
  Reader Comments
  Email Alert *
  Add to My List *

 Article Access Statistics
    PDF Downloaded110    
    Comments [Add]    

Recommend this journal