Indian Journal of Dental ResearchIndian Journal of Dental ResearchIndian Journal of Dental Research
HOME | ABOUT US | EDITORIAL BOARD | AHEAD OF PRINT | CURRENT ISSUE | ARCHIVES | INSTRUCTIONS | SUBSCRIBE | ADVERTISE | CONTACT
Indian Journal of Dental Research   Login   |  Users online: 746

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size         

 


 
ORIGINAL RESEARCH Table of Contents   
Year : 2012  |  Volume : 23  |  Issue : 2  |  Page : 213-220
Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: A FEM study


1 Department of Orthodontics and Dentofacial Orthopedics, Thai Moogambigai Dental College and Hospital, Chennai, India
2 Department of Orthodontics and Dentofacial Orthopedics, Meenakshi Ammal Dental College and Hospital, Chennai, India

Correspondence Address:
N Raj Vikram
Department of Orthodontics and Dentofacial Orthopedics, Thai Moogambigai Dental College and Hospital, Chennai
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-9290.100429

Rights and Permissions

Context: During fixed orthodontic therapy, when the stress levels in the periodontal ligament (PDL) exceedsan optimum level, it could lead to root resorption. Aims: To determine an apical stress incident on the maxillary central incisor during tooth movement with varying cemental and periodontal ligament thickness by Finite Element Method (FEM) modeling. Settings and Design: A three dimensional finite element model of a maxillary central incisor along with enamel, dentin, cementum, PDL and alveolar bone was recreated using EZIDCOM and AUTOCAD software. ALTAIR Hyper mesh 7.0 version was used to create the Finite Element meshwork of the tooth. This virtual model was transferred to Finite Element Analysis software, ANSYS where different tooth movements were performed. Materials and Methods: Cemental thickness at the root apex was varied from 200 μm to 1000 μm in increments of 200 μm. PDL thickness was varied as 0.24 mm and 0.15 mm. Intrusive, Extrusive, Rotation and Tipping forces were delivered to determine an apical stress for each set of parameters. Results: Results indicated that an apical stress induced in the cementum and PDL, increased with an increase in cementum and PDL thickness respectively. Apical stress induced in the cementum remained the same or decreased with an increase in the PDL thickness. Apical stress induced in the PDL decreased with an increase in the cementum thickness. Conclusion: The study concluded that the clinical delivery of an orthodontic forces will cause stress in the cementum and PDL. Hence, it is necessary to limit the orthodontic force to prevent root resorption.


[FULL TEXT] [PDF]*
Print this article     Email this article

 
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
  Citation Manager
 Access Statistics
  Reader Comments
  Email Alert *
  Add to My List *
 
 

 Article Access Statistics
    Viewed4635    
    Printed125    
    Emailed8    
    PDF Downloaded234    
    Comments [Add]    
    Cited by others 6    

Recommend this journal