Indian Journal of Dental ResearchIndian Journal of Dental ResearchIndian Journal of Dental Research
HOME | ABOUT US | EDITORIAL BOARD | AHEAD OF PRINT | CURRENT ISSUE | ARCHIVES | INSTRUCTIONS | SUBSCRIBE | ADVERTISE | CONTACT
Indian Journal of Dental Research   Login   |  Users online: 3235

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size         

 


 
ORIGINAL RESEARCH Table of Contents   
Year : 2011  |  Volume : 22  |  Issue : 2  |  Page : 277-284
In vivo bone response and interfacial properties of titanium-alloy implant with different designs in rabbit model with time


1 Department of Periodontics and Oral Implantology, Guru Nanak Institute of Dental Science and Research, Kolkata, India
2 Department of Bioceramics and Coating Division, Central Glass and Ceramic Research Institute, Kolkata, India
3 Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India

Correspondence Address:
Biswanath Kundu
Department of Bioceramics and Coating Division, Central Glass and Ceramic Research Institute, Kolkata
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-9290.84304

Rights and Permissions

Background: Using implants for dental applications are well-accepted procedures as one of the solutions for periodontal defect repair. Suitable design and materials, their reaction with the surrounding hard tissues and interfacial biomechanical properties are still considered to be the primary criteria which need to be addressed systematically. In the present study, a thorough and systemic approach was made to identify a suitable implant, considering the above criteria after both in vitro and in vivo animal trials. Materials and Methods: Titanium alloy (Ti-6Al-4V) implants, with thread and without thread models, were implanted to the mid-metaphysial portion of the tibia of the right hind leg of three white Australian Chinchilla rabbit species and their effects and response to the surrounding bone were investigated. Parameters studied included hematological and biochemical features (serum alkaline phosphatase and calcium), both preoperatively and postoperatively, consecutively for 7 days and after 1-3 months. The interfacial integrity and compositional variation along the interface were studied using scanning electron microscope (SEM) with energy dispersive analysis of X-ray (EDAX) and histopathology from 1 to 3 months consecutively. Finally, biomechanical properties were studied with the help of push-out test. Results: Bone remineralization started through the process of electro-physiological ionic exchanges, which helps in formation of osteoblastic cells in the area of bony injury. The SEM-EDAX results confirmed the initial stability for the Ti (with thread) implant, but the regeneration of new bone formation was faster in the case of Ti (Without thread) implant, and hence could be used for faster healing. These have also been substantiated through push-out and histopathlogical tests. Conclusion: From the physico-chemical and biomechanical observations, it was found that that smooth type implants were well accepted in the physiological condition although chances of elemental leaching from the surface were also observed. Increase of the surface roughness can help into the formation of physico-chemical bondage with the surrounding hard tissues.


[FULL TEXT] [PDF]*
Print this article     Email this article

 
 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
  Citation Manager
 Access Statistics
  Reader Comments
  Email Alert *
  Add to My List *
 
 

 Article Access Statistics
    Viewed3901    
    Printed140    
    Emailed3    
    PDF Downloaded145    
    Comments [Add]    
    Cited by others 7    

Recommend this journal