Indian Journal of Dental ResearchIndian Journal of Dental ResearchIndian Journal of Dental Research
HOME | ABOUT US | EDITORIAL BOARD | AHEAD OF PRINT | CURRENT ISSUE | ARCHIVES | INSTRUCTIONS | SUBSCRIBE | ADVERTISE | CONTACT
Indian Journal of Dental Research   Login   |  Users online: 1445

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size         

 


 
ORIGINAL RESEARCH Table of Contents   
Year : 2008  |  Volume : 19  |  Issue : 2  |  Page : 124-128
Study of the patterns of periodontal destruction in smokers with chronic periodontitis


Division of Periodontics, College of Dentistry, King Saud University, Post Box 60169, Riyadh 11545, Saudi Arabia

Click here for correspondence address and email

Date of Submission10-May-2007
Date of Decision22-Oct-2007
Date of Acceptance22-Oct-2007
 

   Abstract 

Cigarette smoking is a well-established risk factor for periodontitis and carries an increased risk for loss of periodontal attachment as well as for bone loss.
Aims: The purpose of the study was to investigate the pattern of the intraoral distribution of periodontal destruction among cigarette smokers with periodontitis by assessing the periodontal probing depth (PPD) and clinical attachment level (CAL).
Materials and Methods: Thirty smokers with chronic periodontitis were enrolled in the study. PPD, CAL, plaque index (PI), and bleeding on probing (BOP) were measured. The data was pooled for the anterior sextant and the posterior sextant as well as for the facial and lingual surfaces. The degree of periodontal destruction was compared in these sextants.
Statistical Analysis: Comparisons were made between maxillary anterior, maxillary posterior, mandibular anterior, and mandibular posterior using the one-way analysis of variance (ANOVA) test. When the overall ANOVA showed statistical significance, post hoc testing (Tukey-Kramer multiple comparisons test) was performed to explore the differences between any two groups. P -values <0.05 were considered significant.
Results: The maxillary anterior sextant showed significantly higher PPD and CAL loss than the other sextants. Similarly, the maxillary palatal area showed higher probing depth and clinical attachment loss than the facial sites and the mandibular regions.
Conclusions: From the results it can be concluded that there is variation in the periodontal tissue destruction in different areas of the oral cavity, with the maximum periodontal destruction in the maxillary palatal region. These observations emphasize the deleterious effects of smoking on the periodontal tissues.

Keywords: Attachment loss, bone loss, periodontitis, smoking

How to cite this article:
Anil S. Study of the patterns of periodontal destruction in smokers with chronic periodontitis. Indian J Dent Res 2008;19:124-8

How to cite this URL:
Anil S. Study of the patterns of periodontal destruction in smokers with chronic periodontitis. Indian J Dent Res [serial online] 2008 [cited 2020 Feb 28];19:124-8. Available from: http://www.ijdr.in/text.asp?2008/19/2/124/40466
There is considerable evidence demonstrating the association of periodontal destruction with cigarette smoking. Cigarette smoking is an important risk factor for periodontal disease. [1],[2],[3] Cigarette smokers are five times more likely to develop severe periodontitis than nonsmokers. [4],[5] A meta-analysis of the effects of smoking on periodontal tissue confirmed smoking as a risk factor for periodontal disease with an odds ratio of 2.82. [6] Epidemiological data indicate that smokers have a greater incidence of tooth loss than nonsmokers. [7],[8] Furcation involvement in the molar teeth is also more frequent in smokers than in nonsmokers. [9],[10] These studies suggest that cigarette smoking increases the susceptibility to periodontal pathogens and to tissue destruction. [5],[6]

Cigarette smoking influences periodontal disease through a variety of systemic effects, for example, there is impaired chemotaxis, decreased phagocytosis by both oral and peripheral neutrophils, and reduced antibody production. [11],[12] A substantial body of evidence is available to demonstrate the local detrimental effects of smoking on periodontal health. These local effects include vasoconstriction caused by nicotine as well as decreased oxygen tension, which may create a favorable subgingival environment for colonization by anaerobic bacteria. [13] Although it is possible that the heat from cigarette smoking could have a local effect on the periodontium, there is hardly any scientific evidence to support such an effect. Some studies have reported differences in the pattern of periodontal destruction among smokers, which may imply a localized effect of smoking on maxillary palatal surfaces, especially in the anterior region. [4],[10],[14]

Smokers tend to have greater numbers of deeper periodontal pockets and greater mean periodontal probing depth (PPD). [15],[16],[17] Studies have also shown greater mean clinical attachment level (CAL) loss in smokers compared to nonsmokers. [10],[18] Haffajee and Socransky [19] found that the patterns of attachment loss in smokers and nonsmokers were different. Smokers had more clinical attachment loss and greater probing depth in all areas, with the highest values being in the palatal area. Baharin et al ., [20] in a retrospective comparative study showed that the proportion of sites with bone loss of 4.5 mm or greater was higher in smokers, with the greatest difference being observed in the upper anterior sites.

Even though a few studies have reported that the periodontal destruction pattern may vary in different areas of the oral cavity among smokers, further studies were recommended to prove the relationship. Hence, the present study was undertaken to investigate the intraoral distribution of periodontal destruction pattern among cigarette smokers with periodontitis by studying the PPD and CAL.


   Materials and Methods Top


Study population

A total of 30 systemically healthy smokers aged 25-55 years old were enrolled in the study. They were selected from among the patients who were referred to the periodontology clinic between September 2005 to February 2006 for diagnosis and treatment of periodontitis. Approval of the ethics committee was obtained from the College of Dentistry Research Center (CDRC), King Saud University. Periodontal status of the patients were assessed according the classification of the American Academy of Periodontology. [21] Smoking status was determined based on the daily consumption of cigarettes. [22]

Subjects with a PPD of ≥4 mm in at least 30% of the teeth, and who had smoked a minimum of 20 cigarettes per day for not less than five years, were included in the present study. The following criteria were also used to exclude subjects from the study: (1) age less than 25 or more than 55 years; (2) persons suffering from any chronic medical condition, including diabetes and viral, fungal, or bacterial infections; (3) persons suffering from aggressive periodontitis, periodontal abscess, or necrotizing ulcerative gingivitis or periodontitis; (4) persons who had received periodontal treatment or antibiotics within the preceding three months.

Clinical periodontal examination

An extensive medical history was taken with the help of a printed questionnaire and by interview of 20 to 30 min duration. All clinical measurements were performed by the same examiner. Calibration exercises for probing measurements were performed in five patients before the actual study. The patients' details were masked so that the examiner was blind to the patients' information.

PPD and CAL were measured with a calibrated probe (Williams markings) at the mesio-buccal, mid-buccal, disto-buccal, mesio-lingual, mid-lingual, and disto-lingual aspect of each tooth. The data was pooled for the anterior sextants and posterior sextants for comparison. Further comparison of the PPD and CAL of the facial and lingual surfaces of these sextants were also done. The smoking history was assessed through a standardized interview and a questionnaire. The smoking exposure was expressed in terms of consumption (number of cigarette per day) and duration (in years).

Statistical analysis

Mean PPD and CAL were calculated for the entire mouth, for the upper jaw, the lower jaw, the buccal aspect, the lingual aspect, the anterior teeth, and the posterior teeth. Comparisons were made between upper anterior, upper posterior, lower anterior, and lower posterior using the one-way analysis of variance (ANOVA) test. When the overall ANOVA showed statistical significance, post hoc testing (Tukey-Kramer multiple comparisons test) was performed to explore the differences between any two groups. P-values <0.05 were considered as significant.


   Results Top


[Table - 1] presents the mean percentage of teeth remaining in each region of the mouth. [Table - 2] shows the mean plaque index (PI) and bleeding on probing (BOP) for the four sextants studied. The PI and BOP did not show any statistically significant variations between the maxillary and mandibular anterior and posterior areas of the mouth.

The mean PPD and clinical attachment loss for all regions are presented in [Table - 3] [Figure - 1]. The maxillary anterior teeth had significantly deeper pockets than the posterior teeth and the mandibular region ( P < 0.05) [Figure - 2].

The differences between the lingual and facial sites are presented in [Table - 4]. It was only statistically significant for the palatal sites in the maxilla, with upper anterior palatal sites showing greater probing depth difference ( P < 0.001) than the maxillary anterior facial sites, maxillary posterior buccal sites, palatal sites, lower anterior facial and lingual sites, and lower posterior buccal and lingual sites.

The maxillary anterior palatal sites showed greater mean attachment loss ( P < 0.05) than the maxillary anterior facial sites, the maxillary posterior palatal sites, and the maxillary posterior buccal sites. However, the mandibular sites showed lower mean attachment level loss than the maxillary sites ( P < 0.001).


   Discussion Top


Clinical studies have shown clear associations between smoking and alveolar bone loss, loss of periodontal attachment, and tooth loss. [2],[3],[7],[19] The increased risk of tooth loss may be attributable to the direct effect of tobacco smoking on periodontal tissues. [15] In other words, smokers are assumed to have more periodontal destruction than nonsmokers. Mahuca and colleagues [23] evaluated the degree of periodontal disease and its relationship to smoking habits. They reported higher probing depths and attachment loss in smokers. Smokers diagnosed with severe forms of periodontitis were shown to have more affected teeth and a higher mean loss of periodontal attachment than nonsmokers with these conditions. [18],[24] A number of clinical investigations have reported that cigarette smokers with periodontitis have more extensive periodontal destruction in the maxillary region. However, in this study, significant effects were mainly seen in the palatal anterior region. [25]

The difference in patterns of periodontal destruction in smokers as studied by Haber and Kent [26] was suggestive of a local effect of smoking. Preber and Bergstrom [27] suggested that higher local exposure to cigarette smoke of the palatal maxillary surfaces, as compared to the other areas, could lead to a significant increase in probing depth. Van der Weijden et al . [14] reported that the palatal surfaces of the maxillary anterior teeth showed the highest probing depth and they attributed it to a possible local effect of smoking. Haffajee and Socransky [19] have also reported a difference in pocket depth and attachment level profiles at the palatal maxillary sites. Smokers showed the greatest numerical difference in the mean proportion of sites probing 4 mm and above on the upper anterior palatal surfaces. [20] However, it must be stressed that probing depth proportion cannot be equated with attachment loss, and CAL measurements should also be taken into account for a reliable assessment of periodontal destruction.

The results of the present study were different, in that the mean of periodontal probing depth and attachment loss differ in almost all regions. Data were pooled by maxillary and mandibular regions and facial and lingual surfaces. In the maxilla, the anterior palatal region showed the highest variation from the other segments. These findings were in agreement with previous reports showing maximum periodontal destruction in the maxillary palatal region. [20],[24]

The evidence for the systemic effects of smoking on the periodontium is overwhelming and has been proposed as the most important factor. [12],[28] However, the possibility of an additional local effect of tobacco use cannot be ruled out. The present data suggest that there might be a local effect of cigarette smoking in addition to a systemic effect. Cigarette smoke is more likely to come in contact with the lingual surface of the maxilla, the area where the differences in attachment level and pocket depth values were the greatest. Clearly, there is little controversy regarding the effect of cigarette smoking on the clinical parameters of periodontal disease. What is less clear is the mechanism by which cigarette smoking causes its harmful effects. One of the mechanisms might be an alteration of the subgingival microbiota due to smoking. [22] The reduced gingival crevicular fluid flow reported in smokers means that antibodies and other protective substances derived from the serum will be reduced in quantity. These factors may influence the host defense, increasing the vulnerability to subgingival microbiota at these sites. [29] In addition, smoking may affect the vasculature, the humoral immune system, and the cellular and soluble inflammatory system and may also have effects throughout the cytokine and adhesion molecule network. [30],[31] The importance of these smoking-related alterations and their precise mode of action in increasing the risk of periodontal disease remain to be elucidated.

There is considerable evidence for the role of smoking in the etiology of periodontal disease as well as for its adverse influence on the treatment of periodontitis. In the treatment of periodontal disease in smokers, caution should be exercised in planning advanced periodontal treatment procedures such as regenerative surgery. Smoking influences healing; therefore, the capacity for regeneration, particularly of bone regeneration, may be impeded. [32],[33] The effects of smoking on the outcome of non-surgical periodontal therapy may manifest as less gingivitis resolution, less probing depth reduction, and less attachment gain in smokers. [34] The longer-term effects are evidenced by the fact that 80-90% of periodontal treatment failures occur in smokers. [29],[35]


   Acknowledgment Top


The author wishes to acknowledge Dr. Hamdan Al-Ghamdi for the technical assistance in the compilation of the data.

 
   References Top

1.Bergstrom J. Periodontitis and smoking: An evidence-based appraisal. J Evid Based Dent Pract 2006;6:33-41.  Back to cited text no. 1    
2.Heasman L, Stacey F, Preshaw PM, McCracken GI, Hepburn S, Heasman PA. The effect of smoking on periodontal treatment response: A review of clinical evidence. J Clin Periodontol 2006;33:241-53.  Back to cited text no. 2  [PUBMED]  [FULLTEXT]
3.Bergstrom J. Tobacco smoking and chronic destructive periodontal disease. Odontology 2004;92:1-8.  Back to cited text no. 3    
4.Haber J. Smoking is a major risk factor for periodontitis. Curr Opin Periodontol 1994;12-8.  Back to cited text no. 4    
5.Page RC, Beck JD. Risk assessment for periodontal diseases. Int Dent J 1997;47:61-87.  Back to cited text no. 5  [PUBMED]  
6.Papapanou PN. Periodontal diseases: Epidemiology. Ann Periodontol 1996;1:1-36.  Back to cited text no. 6    
7.Ahlqwist M, Bengtsson C, Hollender L, Lapidus L, Osterberg T. Smoking habits and tooth loss in Swedish women. Community Dent Oral Epidemiol 1989;17:144-7.  Back to cited text no. 7  [PUBMED]  
8.Holm G. Smoking as an additional risk for tooth loss. J Periodontol 1994;65:996-1001.  Back to cited text no. 8  [PUBMED]  
9.Mullally BH, Linden GJ. Molar furcation involvement associated with cigarette smoking in periodontal referrals. J Clin Periodontol 1996;23:658-61.  Back to cited text no. 9  [PUBMED]  
10.Axelsson P, Paulander J, Lindhe J. Relationship between smoking and dental status in 35-, 50-, 65- and 75-year-old individuals. J Clin Periodontol 1998;25:297-305.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]
11.Persson L, Bergstrom J, Ito H, Gustafsson A. Tobacco smoking and neutrophil activity in patients with periodontal disease. J Periodontol 2001;72:90-5.  Back to cited text no. 11    
12.Palmer RM, Wilson RF, Hasan AS, Scott DA. Mechanisms of action of environmental factors--tobacco smoking. J Clin Periodontol 2005;32:180-95.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]
13.Salvi GE, Lawrence HP, Offenbacher S, Beck JD. Influence of risk factors on the pathogenesis of periodontitis. Periodontol 2000 1997;14:173-201.  Back to cited text no. 13    
14.van der Weijden GA, de Slegte C, Timmerman MF, van der Velden U. Periodontitis in smokers and nonsmokers: Intra-oral distribution of pockets. J Clin Periodontol 2001;28:955-60.  Back to cited text no. 14  [PUBMED]  [FULLTEXT]
15.Bergstrom J, Eliasson S. Noxious effect of cigarette smoking on periodontal health. J Periodontal Res 1987;22:513-7.  Back to cited text no. 15    
16.Bergstrom J. Cigarette smoking as risk factor in chronic periodontal disease. Community Dent Oral Epidemiol 1989;17:245-7.  Back to cited text no. 16    
17.Haber J, Wattles J, Crowley M, Mandell R, Joshipura K, Kent RL. Evidence for cigarette smoking as a major risk factor for periodontitis. J Periodontol 1993;64:16-23.  Back to cited text no. 17  [PUBMED]  
18.Schenkein HA, Gunsolley JC, Koertge TE, Schenkein JG, Tew JG. Smoking and its effects on early-onset periodontitis. J Am Dent Assoc 1995;126:1107-13.  Back to cited text no. 18  [PUBMED]  [FULLTEXT]
19.Haffajee AD, Socransky SS. Relationship of cigarette smoking to attachment level profiles. J Clin Periodontol 2001;28:283-95.  Back to cited text no. 19  [PUBMED]  [FULLTEXT]
20.Baharin B, Palmer RM, Coward P, Wilson RF. Investigation of periodontal destruction patterns in smokers and nonsmokers. J Clin Periodontol 2006;33:485-90.  Back to cited text no. 20  [PUBMED]  [FULLTEXT]
21.Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999;4:1-6.  Back to cited text no. 21  [PUBMED]  
22.Bostrom L, Bergstrom J, Dahlen G, Linder LE. Smoking and subgingival microflora in periodontal disease. J Clin Periodontol 2001;28:212-9.  Back to cited text no. 22    
23.Machuca G, Rosales I, Lacalle JR, Machuca C, Bullon P. Effect of cigarette smoking on periodontal status of healthy young adults. J Periodontol 2000;71:73-8.  Back to cited text no. 23    
24.Mullally BH, Breen B, Linden GJ. Smoking and patterns of bone loss in early-onset periodontitis. J Periodontol 1999;70:394-401.  Back to cited text no. 24  [PUBMED]  
25.Kamma JJ, Nakou M, Baehni PC. Clinical and microbiological characteristics of smokers with early onset periodontitis. J Periodontal Res 1999;34:25-33.  Back to cited text no. 25  [PUBMED]  
26.Haber J, Kent RL. Cigarette smoking in a periodontal practice. J Periodontol 1992;63:100-6.  Back to cited text no. 26  [PUBMED]  
27.Preber H, Bergstrom J. Cigarette smoking in patients referred for periodontal treatment. Scand J Dent Res 1986;94:102-8.  Back to cited text no. 27    
28.Palmer RM, Scott DA, Meekin TN, Poston RN, Odell EW, Wilson RF. Potential mechanisms of susceptibility to periodontitis in tobacco smokers. J Periodontal Res 1999;34:363-9.  Back to cited text no. 28  [PUBMED]  
29.Kinane DF, Radvar M. The effect of smoking on mechanical and antimicrobial periodontal therapy. J Periodontol 1997;68:467-72.  Back to cited text no. 29  [PUBMED]  
30.Barbour SE, Nakashima K, Zhang JB, Tangada S, Hahn CL, Schenkein HA, et al. Tobacco and smoking: Environmental factors that modify the host response (immune system) and have an impact on periodontal health. Crit Rev Oral Biol Med 1997;8:437-60.  Back to cited text no. 30  [PUBMED]  [FULLTEXT]
31.Kinane DF, Chestnutt IG. Smoking and periodontal disease. Crit Rev Oral Biol Med 2000;11:356-65.  Back to cited text no. 31  [PUBMED]  [FULLTEXT]
32.Tonetti MS, Pini-Prato G, Cortellini P. Effect of cigarette smoking on periodontal healing following GTR in infrabony defects: A preliminary retrospective study. J Clin Periodontol 1995;22:229-34.  Back to cited text no. 32  [PUBMED]  
33.Trombelli L, Scabbia A. Healing response of gingival recession defects following guided tissue regeneration procedures in smokers and nonsmokers. J Clin Periodontol 1997;24:529-33.  Back to cited text no. 33  [PUBMED]  [FULLTEXT]
34.Ah MK, Johnson GK, Kaldahl WB, Patil KD, Kalkwarf KL. The effect of smoking on the response to periodontal therapy. J Clin Periodontol 1994;21:91-7.  Back to cited text no. 34  [PUBMED]  
35.Wolff L, Dahlen G, Aeppli D. Bacteria as risk markers for periodontitis. J Periodontol 1994;65:498-510.  Back to cited text no. 35    

Top
Correspondence Address:
Sukumaran Anil
Division of Periodontics, College of Dentistry, King Saud University, Post Box 60169, Riyadh 11545
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-9290.40466

Rights and Permissions


    Figures

  [Figure - 1], [Figure - 2]
 
 
    Tables

  [Table - 1], [Table - 2], [Table - 3], [Table - 4]

This article has been cited by
1 Increased Levels of Serum and Gingival Crevicular Fluid Monocyte Chemoattractant Protein-1 in Smokers With Periodontitis
Sukumaran Anil,R.S. Preethanath,Mohammed Alasqah,Sameer A. Mokeem,Pradeep S. Anand
Journal of Periodontology. 2013; 84(9): e23
[Pubmed] | [DOI]
2 Comparison of periodontal destruction patterns among patients with and without the habit of smokeless tobacco use - a retrospective study
P. S. Anand,K. P. Kamath,A. Bansal,S. Dwivedi,S. Anil
Journal of Periodontal Research. 2013; 48(5): 623
[Pubmed] | [DOI]
3 Comparison of relative TLR-2 and TLR-4 expression level of disease and healthy gingival tissue of smoking and non-smoking patients and periodontally healthy control patients
K Fatemi,M Radvar,A Rezaee,H Rafatpanah,H Azangoo khiavi,Y Dadpour,N Radvar
Australian Dental Journal. 2013; 58(3): 315
[Pubmed] | [DOI]
4 Smoking and Periodontal Diseases
Parviz Torkzaban,Zahra Khalili,Narges Ziaei
Avicenna Journal of Dental Research. 2013; 5(2)
[Pubmed] | [DOI]
5 Smoking and Periodontal Diseases
Parviz Torkzaban,Zahra Khalili,Narges Ziaei
Avicenna Journal of Dental Research. 2013; 5(2)
[Pubmed] | [DOI]
6 Oxidative stress in periodontitis [Periyodontisde oksidatif stres]
Dhotre, P.S. and Suryakar, A.N. and Bhogade, R.B.
European Journal of General Medicine. 2012; 9(2): 81-84
[Pubmed]
7 Pattern of cigarette smoking effect on periodontal pocketing and attachment loss: A retrospective study
Radvar, M. and Darby, I. and Polster, A. and Arashi, M. and Moeintaghavi, A. and Sohrabi, K.
International Journal of Dental Hygiene. 2011; 9(4): 291-295
[Pubmed]
8 Nicotine addiction and selected periodontal parameters in chronic periodontitis [Nikotynizm a wybrane parametry periodontologiczne w przewlekłym zapaleniu przyze{ogonek
Rudziński, R. and Banach, J. and Safranow, K. and Dembowska, E. and Drozdźik, A. and Mazurek-Mochol, M.M.
Dental and Medical Problems. 2011; 48(2): 180-188
[Pubmed]
9 Pattern of cigarette smoking effect on periodontal pocketing and attachment loss: a retrospective study
M Radvar,I Darby,A Polster,M Arashi,A Moeintaghavi,K Sohrabi
International Journal of Dental Hygiene. 2011; 9(4): 291
[Pubmed] | [DOI]
10 Effects of smoking on periodontal disease [Effets du tabac sur la maladie parodontale]
Underner, M. and Maes, I. and Urban, T. and Meurice, J.-C.
Revue des Maladies Respiratoires. 2009; 26(10): 1057-1073
[Pubmed]
11 Effets du tabac sur la maladie parodontale
M. Underner,I. Maes,T. Urban,J.-C. Meurice
Revue des Maladies Respiratoires. 2009; 26(10): 1057
[Pubmed] | [DOI]
12 Effets du tabac sur la maladie parodontale
M. Underner,I. Maes,T. Urban,J.-C. Meurice
Revue des Maladies Respiratoires. 2009; 26(10): 1057
[Pubmed] | [DOI]
13 GINGIVAL CREVICULAR FLUID IMMUNOGLOBULINS IN SMOKERS WITH CHRONIC PERIODONTITIS
ANIL, S. and BDS, MDS
Pakistan Oral \& Dental Journal. ; 28(1)
[Pubmed]



 

Top
 
 
  Search
 
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


    Abstract
    Materials and Me...
    Results
    Discussion
    Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed6580    
    Printed246    
    Emailed16    
    PDF Downloaded957    
    Comments [Add]    
    Cited by others 13    

Recommend this journal